Name:	
Instructor:	

Math 10550, Final Exam: December 15, 2007

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

		PLEAS	E MAR	K YOU	R ANSV	VERS W	ITH A	N X, no	ot a circ	ele!	
1. 2.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	15. 16.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)
3. 4.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	18.	(a) (a)	(b) (b)	(c)	(d) (d)	(e) (e)
5. 6.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	19. 20.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)
7. 8.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	21. 22.	(a) (a)	(b) (b)	(c)	(d) (d)	(e) (e)
9. 10.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	23. 24.	(a) (a)	(b) (b)	(c)	(d) (d)	(e) (e)
11. 12.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e)	25.	(a)	(b)	(c)	(d)	(e)
13. 14.	(a) (a)	(b)	(c) (c)	(d) (d)	(e) (e)						

Name: Instructor:

Multiple Choice

1.(6 pts.) Find the limit

$$\lim_{x \to 0} \frac{1 - \sqrt{x+1}}{x}.$$

(a) -1

- $(b) \quad 0$
- (c) The limit does not exist.
- (d)

(e) $-\frac{1}{2}$

2.(6 pts.) The function

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a removable discontinuity at x = 2. We can remove this discontinuity by defining f(2) to be

- (a)

- (b) 1 (c) 0 (d) $\frac{3}{2}$ (e) $\frac{5}{4}$

Name: _____

Instructor:

3.(6 pts.) If

$$r = \frac{\sin \theta}{1 + \cos \theta},$$

then $\frac{dr}{d\theta} =$

(a)
$$\frac{\cos\theta + \cos^2\theta - \sin^2\theta}{(1 + \cos\theta)^2}$$

(b)
$$\frac{1}{1 + \cos \theta}$$

(c)
$$-\frac{1}{1+\cos\theta}$$

(d)
$$\frac{\cos \theta}{(1+\cos \theta)^2}$$

(e) $-\frac{\cos\theta + \cos^2\theta - \sin^2\theta}{(1 + \cos\theta)^2}$

4.(6 pts.) If

$$f(x) = \sqrt{1 + \sqrt{1 + x}},$$

then f'(8) =

- (a) $\frac{1}{24}$ (b) $\frac{1}{12}$ (c) $\frac{1}{8}$ (d) $\frac{1}{9}$ (e) $\frac{1}{2}$

Name: _______
Instructor: ______

5.(6 pts.) The **second** derivative of

$$y = (x+1)(x-1)(x^2+1)$$

is

- (a) 24x
- (b) $x^2 + 2x 1$
- (c) $12x^2$
- (d) $4x^3$
- (e) $4x^2 2x + 1$

6.(6 pts.) A body travels along a straight line according to the law

$$s = -t^4 - 4t^3 + 20t^2, \quad t \ge 0.$$

At what position, **after** the motion gets started, does the body first come to rest?

- (a) s = 32
- (b) s = 36
- (c) s = 2

- $(d) \quad s = 12$
- (e) s = 24

Instructor:

7.(6 pts.) The equation of the tangent line to the curve

$$y = x^3 + 6x^2 + 10x + 6$$

at x = -2 is

(a) $y = \frac{x}{2}$

(b) y = -2x - 2

(c) $y = -\frac{1}{2}x + 1$

 $(d) \quad y = -x + 2$

(e) y = -2x

8.(6 pts.) Use the implicit differentiation to find the equation of the tangent line to the curve

$$\sqrt{5x + 9y} = 2 + xy^2 + y$$

at the point (0,1).

- (a) $y = \frac{4}{3}x + 1$ (b) $y = -\frac{5}{6}x$ (c) $y = \frac{1}{3}x + 1$
- (d) $y = -\frac{5}{6}x + 1$ (e) $y = \frac{1}{3}x$

Name: Instructor: _____

9.(6 pts.) A cylinder is carved out of ice and then left in the sun to melt. If the radius decreases at a rate of 3 inches per hour and the height decreases at a rate of 6 inches per hour, how fast is the surface area of the cylinder decreasing when the cylinder is at height 5 feet and radius one foot? (Hint: 12 inches in a foot.)

Answer: The total surface area decreases at a rate of

- (a) $\frac{3\pi}{4}$ ft²/hr
- (b) $\frac{5\pi}{4}$ ft²/hr
 - (c) $\frac{5\pi}{2}$ ft²/hr

- (d) $\frac{9\pi}{2}$ ft²/hr
- (e) $2\pi \text{ ft}^2/\text{hr}$

10.(6 pts.) Use linear approximation to estimate

$$\frac{1}{\sqrt{4.1}}$$

- (a) $\frac{1}{\sqrt{4.1}} \approx \frac{81}{160}$ (b) $\frac{1}{\sqrt{4.1}} \approx \frac{39}{80}$
- (c) $\frac{1}{\sqrt{4.1}} \approx \frac{9}{20}$
- (d) $\frac{1}{\sqrt{4.1}} \approx \frac{79}{160}$ (e) $\frac{1}{\sqrt{4.1}} \approx \frac{41}{80}$

Name: _______
Instructor: ______

11.(6 pts.) The maximum and minimum values of

$$f(x) = \frac{x}{x^2 + 1},$$

on the interval [0,2] are

- (a) $M = \frac{1}{2}, m = 0$
- (b) $M = \frac{1}{2}, m = -\frac{1}{2}$
- (c) $M = 1, m = -\frac{3}{25}$
- (d) $M = \frac{2}{5}, m = 0$
- (e) m = 0 is a minimum; there is no maximum.

12.(6 pts.) Determine the number of solutions of the equation

$$x^3 - 15x + 1 = 0$$

in the interval [-2, 2]. The number of solutions is

- (a) 2
- (b) 0
- (c) 1
- (d) 3
- (e) 4

Name: ______
Instructor: _____

13.(6 pts.) Consider the function

$$f(x) = \frac{x^2 + 3}{x - 1}.$$

One of the following statements is true. Which one?

- (a) The line y = x + 1 is a slant asymptote of f, and the line x = 1 is a vertical asymptote of f.
- (b) f has no horizontal or slant asymptotes, and the line x = -1 is a vertical asymptote.
- (c) The line y = 0 is a horizontal asymptote of f, and the line x = -1 is a vertical asymptote of f.
- (d) The line y = x + 2 is a slant asymptote of f, and the line f has no vertical asymptotes.
- (e) The line y = x 1 is a slant asymptote of f and the line x = 1 is a vertical asymptote of f.

14.(6 pts.) Consider the function

$$f(x) = \frac{x^2 + 3}{x - 1}.$$

One of the following statements is true. Which one?

- (a) f is increasing on the interval (-1,3).
- (b) f has a local minimum at x = -1.
- (c) f is decreasing on the intervals (-1,1) and (1,3).
- (d) f is increasing on the intervals $(-\infty, -1)$ and (1, 3).
- (e) f has a local minimum at x = 1.

Name:	
Instructor:	

15.(6 pts.) Consider the function

$$f(x) = \frac{\sqrt{9x^6 - x}}{x^3 + 1}.$$

One of the following statements is true. Which one?

- (a) y = 3 is a horizontal asymptote of f, and y = -3 is not a horizontal asymptote.
- (b) f has no horizontal asymptotes.
- (c) y = 0 and y = -3 are both horizontal asymptotes of f.
- (d) $y = \pm 3$ are both horizontal asymptotes of f.
- (e) y = 0 is a horizontal asymptote of f.

16.(6 pts.) The function $f(x) = (2x+1)^4 - 24x^2 + 5x$ is concave down on which of the following intervals?

(a) (0,1)

(b) $(-1,\infty)$

(c) $(-\infty, -1)$

(d) (-1,0)

(e) $(-\infty, 1)$

17.(6 pts.) An open box is to be made from a square of side one by cutting four identical squares near the vertices. The box with the largest **volume** has a **height** of

(a) $\frac{1}{6}$

(b) $\frac{3}{4}$

(c) $\frac{2}{17}$

(d) $\frac{1}{2}$

(e) $\frac{1}{4}$

18.(6 pts.) When applying Newton's method to approximate a root of the equation $x^3 - x + 2 = 0$, with initial guess $x_1 = 1$, the value of x_2 is:

(a) 1.5

(b) 0.5

 $(c) \quad 0$

(d) 2

(e) 3

Name: Instructor: _____

19.(6 pts.) Which of the following is a Riemann sum corresponding to the integral

$$\int_2^3 x^4 dx ?$$

- (a) $\frac{2}{n} \sum_{i=1}^{n} (2 + \frac{i}{n})^4$ (b) $\frac{1}{n} \sum_{i=1}^{n} (2 + \frac{i}{n})^4$ (c) $\frac{1}{2n} \sum_{i=1}^{n} (\frac{i}{n})^4$
- (d) $\frac{2}{n} \sum_{i=1}^{n} (\frac{2+i}{n})^4$ (e) $\frac{1}{n} \sum_{i=1}^{n} (\frac{i}{n})^4$

20.(6 pts.) A function f(x) defined on the interval [-1,1] has an antiderivative F(x). Assume that F(-1) = 8 and F(1) = 7. Which one of the statements below is true?

- $\int_{-1}^{1} f(x) dx = 1.$ (a)
- (b) F(x) is an increasing function.
- f(x) can be an odd function. (c)
- (d) $\int_{-1}^{1} f(x)dx = 0.$
- (e) $\int_{-1}^{1} f(x)dx = -1$.

Name: ______

21.(6 pts.) Calculate the integral

$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin x| dx.$$

(a) π

(b) 1

(c) $\frac{\pi}{2}$

(d) 2π

(e) 2

22.(6 pts.) The volume of the solid obtained by rotating the region given by $x^2 + y^2 = 1$, $x \ge 0$ and $y \ge 0$, about the line y = -1 is

- (a) $\pi \int_0^1 (1-x^2)dx$
- (b) $\pi \int_0^1 [1-x^2+2\sqrt{1-x^2}]dx$
- (c) $2\pi \int_0^1 x[1-x^2+2\sqrt{1-x^2}]dx$
- (d) $2\pi \int_{0}^{1} x\sqrt{1-x^2} dx$
- (e) $\pi \int_0^1 (1 + \sqrt{1 x^2})^2 dx$

Instructor:

23.(6 pts.) Find the volume of the solid obtained by rotating about the y-axis the region between $y = x^2$ and $y = x^4$.

- (a)
- (b) π (c) $\frac{\pi}{10}$ (d) 2π (e) $\frac{\pi}{5}$

24.(6 pts.) Find the average of $f(x) = \sin^2(x) \cdot \cos(x)$ over $[0, \frac{\pi}{2}]$.

(a)

(b) $\frac{1}{3\pi}$

(d)

(e) $\frac{1}{\pi}$

Name:	
Instructor:	

25.(6 pts.) A (vertical) cylindrical tank has a height 1 meter and base radius 1 meter. It is filled full with a liquid with a density 100 kg/m^3 . Find the work required to empty the tank by pumping all of the liquid to the top of the tank.

(a) $500\pi \text{ kg-m}$

(b) $100\pi \text{ kg-m}$

(c) $200\pi \text{ kg-m}$

(d) 0 kg-m

(e) 50π kg-m

Name:		
Instructor:	ANSWERS	

Math 10550, Final Exam: December 15, 2007

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

		PLEAS	E MAR	K YOU	R ANSW	ERS W	TTH A	N X, no	ot a circ	ele!	
1.	(a)	(b)	(c)	(d)	(ullet)	15.	(a)	(b)	(c)	(ullet)	(e)
2.	(a)	(b)	(c)	(d)	(ullet)	16.	(a)	(b)	(c)	(ullet)	(e)
3.	(a)	(•)	(c)	(d)		17.	(●)	(b)	(c)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)	18.	` '	(b)	(ullet)	(d)	(e)
5.	(a)	(b)		(d)	(e)		(a)	(•)		(d)	(e)
6.	(ullet)	(b)	(c)	(d)	(e)	20.	(a)	(b)	(c)	(d)	(ullet)
7.	(a)			(d)		21.	(a)	(b)	(c)	(d)	(•)
8.	(a)	(b)	(ullet)	(d)	(e)	22.	` '	(ullet)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(•)	(e)		(●)	(b)	(c)	(d)	(e)
10.	` /	(b)	(c)	(ullet)	(e)	24.	(a)	(b)	(ullet)	(d)	(e)
11.		(b)			(e)	25.	(a)	(b)	(c)	(d)	(•)
12.	(a)	(b)	(ullet)	(d)	(e)						
13.	(•)	(b)	(c)	(d)	(e)						
14.	(a)	(b)	(ullet)	(d)	(e)						